skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roumeli, Eleftheria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The overconsumption of plastics has led to a significant micro/nanoplastics pollution problem, driving an urgent need for sustainable alternatives. Synthetic polymer foams such as expanded polystyrene (EPS), polyethylene (PE), and polyurethane (PU), contribute significantly to plastic waste, often ending up in landfills after short service lives. In this article, we present a comprehensive investigation of bacterial cellulose (BC)/pectin composite foams, focusing on how modifications to the biopolymer network and macromolecular interactions influence colloidal and solid-state properties. By treating BC with a citric acid-based deep eutectic solvent (DES), we enhance its colloidal stability, achieving a zeta potential 81.2% more negative, and improve the compressive strength of the resulting foams by 23.8%. Introducing pectin further transforms the structure of the BC network, and significantly alters its electrostatic and rheological properties. The zeta potential reaches absolute values as high as 30.3 mV at 80% pectin, while the recoverability increases and the storage and loss moduli decrease with increasing pectin concentration. Small-angle X-ray scattering (SAXS) reveals modifications in the network structure that provide insight into the substantial changes in the morphological and mechanical properties of the foams. The resulting binary biopolymer foams demonstrate strength and stiffness rivaling those of synthetic polymer foams of similar density. Overall, we demonstrate the critical role of colloidal interactions in tuning the mechanical properties of binary biopolymer solid foams, and highlight the potential of this sustainable and biodegradable system to address pressing environmental issues caused by plastic waste. 
    more » « less
    Free, publicly-accessible full text available March 20, 2026
  2. Unaltered biological matter (biomatter) can be harnessed to fabricate cohesive, sustainable bioplastics. However, controlling the material properties of these bioplastics is challenging, as the contributions of different macromolecular building blocks to processability and performance are unknown. To deconvolute the roles of different classes of biomolecules, we developed experimental and computational methods to construct and analyze biomatter analogs composed of carbohydrates, proteins, and lipids. These analogs are intended to improve fundamental understanding of biomatter plastics. Spectroscopic analyses of biomatter analogs suggest that cohesion depends on protein aggregation during thermomechanical processing. Molecular dynamics simulations confirm that alterations to protein conformation and hydrogen bonding are likely the primary mechanisms underlying the formation of a cohesive, proteinaceous matrix. Simulations also corroborate experimental measurements highlighting the importance of hydrogen bonding and self-assembly between specific, small-molecule constituents. These conclusions may enable the engineering of next-generation biomatter plastics with improved performance. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. The biosynthesis of bacterial cellulose (BC) is significantly influenced by the type of carbon source available in the growth medium, which in turn dictates the material’s final properties. This study systematically investigates the effects of five carbon sources—raffinose (C18H32O16), sucrose (C12H22O11), glucose (C6H12O6), arabinose (C5H10O5), and glycerol (C3H8O3)—on BC production by Komagataeibacter hansenii. The varying molecular weights and structural characteristics of these carbon sources provide a framework for examining their influence on BC yield, fiber morphology, and network properties. BC production was monitored through daily measurements of optical density and pH levels in the fermentation media from day 1 to day 14, providing valuable insights into bacterial growth kinetics and cellulose synthesis rates. Scanning electron microscopy (SEM) was used to elucidate fibril diameter and pore size distribution. Wide-angle X-ray scattering (WAXS) provided a detailed assessment of crystallinity. Selected BC pellicles were further processed via freeze-drying to produce a foam-like material that maximally preserves the natural three-dimensional structure of BC, facilitating the incorporation and release of lidocaine hydrochloride (5%), a widely used local anesthetic. The lidocaine-loaded BC foams exhibited a sustained and controlled release profile over 14 days in simulated body fluid, highlighting the importance of the role of carbon source selection in shaping the BC network architecture and its impact on drug release profile. These results highlight the versatility and sustainability of BC as a platform for wound healing and drug delivery applications. The tunable properties of BC networks provide opportunities for optimizing therapeutic delivery and improving wound care outcomes, positioning BC as an effective material for enhanced wound management strategies. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  4. In recent years, nanocellulose has emerged as a sustainable and environmentally friendly alternative to traditional petroleum-derived structural polymers. Sourced either from plants, algae, or bacteria, nanocellulose can be processed into colloid, gel, film and fiber forms. However, the required fundamental understanding of process parameters that govern the morphology and structure–property relationships of nanocellulose systems, from colloidal suspensions to bulk materials, has not been developed and generalized for all forms of cellulose. This further hinders the more widespread adoption of this biopolymer in applications. Our study investigates the dispersion of cellulose nanofibers (CNFs) produced by a bacterial–yeast co-culture, in solvents, highlighting the role of thermodynamic interactions in influencing their colloidal behavior. By adjusting Hansen solubility parameters, we controlled the thermodynamic relationship between CNFs and solvents across various concentrations, studying the dilute to semi-dilute regimes. Rheological measurements revealed that the threshold at which a concentration-based regime transition occurs is distinctly solvent-dependent. Complementing rheological analysis with small angle X-ray scattering and zeta potential measurements, our findings reveal that enhancing CNF–solvent interactions increases excluded volume in the dilute regime, emphasizing the importance of the balance between fiber–fiber and fiber–solvent interactions. Moreover, we investigated the transition from colloidal to solid state by creating films from dispersions with varying interaction parameters in semi-dilute regimes. Through mechanical testing and scanning electron microscopy imaging of the fracture surfaces, we highlight the significance of electrokinetic effects in such transitions, as dispersions with higher electrokinetic stabilization gave rise to stronger and tougher films despite having less favorable thermodynamic interaction parameters. Our work provides insights into the thermodynamic and electrokinetic interplay that governs bacterial CNF dispersion, offering a foundation for future application and a deeper understanding of nanocellulose's colloidal and structure-property relationships. 
    more » « less